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Volman V, Levine H, Ben-Jacob E, Sejnowski TJ. Locally bal-
anced dendritic integration by short-term synaptic plasticity and active
dendritic conductances. J Neurophysiol 102: 3234–3250, 2009. First
published September 16, 2009; doi:10.1152/jn.00260.2009. The high
degree of variability observed in spike trains and membrane potentials
of pyramidal neurons in vivo is thought to be a consequence of a
balance between excitatory and inhibitory inputs, which depends on
the dynamics of the network. We simulated synaptic currents and ion
channels in a reconstructed hippocampal CA1 pyramidal cell and
show here that a local balance can be achieved on a dendritic branch
with a different mechanism, based on presynaptic depression of
quantal release interacting with active dendritic conductances. This
mechanism, which does not require synaptic inhibition, allows each
dendritic branch to remain sensitive to correlated synaptic inputs,
induces a high degree of variability in the output spike train, and can
be combined with other balance mechanisms based on network
dynamics. This hypothesis makes a testable prediction for the cause of
the observed variability in the firing of hippocampal place cells.

I N T R O D U C T I O N

There is a maintained, but low level of spontaneous activity
in cortical and hippocampal neurons in vivo, characterized by
highly irregular spike trains (Csicsvari et al. 1999). Both the
pyramidal neurons and the local inhibitory interneurons in-
crease their firing rates in response to a strong excitatory input,
but the variability in the spike trains remains high (Csicsvari
et al. 1999; Fenton and Muller 1998; Muller et al. 1987). This
is inconsistent with the naı̈ve picture of a neural integrator
driven by a large number of small postsynaptic potentials, in
which variability is proportional to 1�Ns, where Ns is the
number of synaptic events that are needed to cross the
threshold for spike generation (Softky and Koch 1993). One
possible explanation for this high variability in hippocampal
neurons activity is that, in analogy to cortical neurons, both the
excitatory and inhibitory inputs to the pyramidal neurons
increase in such a way that balance is maintained, with the
increase in spike rate a consequence of the increased variance
of the membrane potential. This explanation depends on a
close match between the excitatory and inhibitory inputs within
the recurrent networks (Salinas and Sejnowski 2000; Shadlen
and Newsome 1998), a condition that might not necessarily be
precisely fulfilled in hippocampal CA1 pyramidal neurons
(Csicsvari et al. 1999).

An alternate mechanism by which the balance of activity
within a neuron could be maintained is through local mecha-
nisms at excitatory synapses that do not depend on the presence
of local inhibition. Short-term synaptic depression occurs at
these synapses, which could reduce the excitatory drive and
introduce variability and correlations in release patterns of
synaptic neurotransmitter (Zucker and Regehr 2002). On the
postsynaptic side of the synapse, hyperpolarizing conductances
such as Ca2�-activated K� currents that affect spike initiation
will also affect the variability of spike times (Larkum and
Nevian 2008; Magee and Cook 2000; Stuart et al. 1999). Both
of these mechanisms have been studied separately in previous
modeling studies (Abbott et al. 1997; de la Rocha and Parga
2005), but there has been no discussion of the consequences of
their interaction on the variability of spike timing.

Here, we used a biophysically realistic model of excitatory
Schaffer collateral synapses on a reconstructed CA1 hippocam-
pal neuron and compartmental modeling techniques to inves-
tigate local balance in dendrites induced by short-term presyn-
aptic plasticity in the quantal model of synaptic transmission.
We found that notwithstanding the large number of excitatory
synaptic inputs, the output spike trains were highly irregular.
Short-term depression interacted with the slow afterhyperpo-
larizing Ca2�-activated K� currents present in dendrites to
maintain a high degree of spiking variability over a wide range
of excitatory drive. This mechanism, which does not depend on
previously proposed concepts such as shunting inhibition or
excitation-inhibition balance, produced a robust balance within
each dendritic branch. Finally, we used the model to explain
the variability observed in place cells in the rat hippocampus
during active exploration (Fenton and Muller 1998), which led
to a testable prediction for the how spike number variability
could be maintained in CA1 pyramidal cells.

M E T H O D S

Stochastic synaptic transmission

The question of how presynaptic mechanisms interact with postsyn-
aptic mechanisms depends on the biophysical properties of synaptic
release at terminals. The synaptic model used here is an extended
version of Bertram-Sherman-Stanley (BSS) model (Bertram et al.
1996; Nadkarni and Jung 2007), which provides a relatively simple,
yet biophysically realistic framework for modeling of single-vesicle
presynaptic short-term plasticity. According to the bound calcium
hypothesis, the facilitation of release is caused by the slow unbinding
rate of calcium. In the model, each active zone (release site) consists
of four independently operating Ca2� gates, and each gate has its own
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rate of binding/unbinding calcium. The rates of gates opening are
nearly the same (Table 1), but the rates of closing span several orders
of magnitude, allowing for short-time facilitation to be manifested as
a slow unbinding of Ca2� from the slowest gate. If at least one vesicle
is available, a quantum of neurotransmitter is released with probability

prelease � O1 � O2 � O3 � O4 (1)

where for the ith gate (i � 1, 2, 3, 4), the probability of open state
occupancy Oi and the probability of closed state occupancy Ci are
determined by the kinetic equations (Bertram et al. 1996)

�Ca�2� � CiO¡
ki

�

Oi OiO¡
ki

�

Ci � �Ca�2� (2)

The probability of releasing a vesicle on stimulation depends on the
amount of calcium influx during action potential (AP). The calcium
signal at the presynaptic terminal after the arrival of the AP is described
as a two-step process of exponential growth with a time constant �rise �
50 �s, followed by an exponential decay with the time constant �fall � 1
ms. This level of modeling accounts both for calcium influx to the
synaptic terminal via voltage-gated calcium channels (rise part) and for
the fast internal buffering and extrusion of calcium from the presynaptic
terminal (fall part). After the vesicle has fused with the membrane and
released neurotransmitter, the synapse enters a short “refractory” phase
during which further fusion is not possible (Dobrunz et al. 1997). This
process is modeled here by assuming that no vesicle is released from the
given presynaptic terminal during �Tref � 5 ms after a successful fusion
of vesicle at that same terminal. After the refractory period, the calcium
signal at the presynaptic terminal has decayed; although in principle the
model allows for asynchronous release of neurotransmitter to occur, in
practice, the probability is quite low, unless there is residual presynaptic
calcium.

The BSS model describes the release process, but it makes no
assumptions about the number and availability of vesicles. CA3–CA1
synapses are known to have a relatively small number of vesicles in
the readily releasable pool (RRP) (Dobrunz and Stevens 1997). For
clarity of presentation and ease in interpreting the results, we assume,
unless specifically indicated otherwise, that the maximal number of
docked vesicles, nves, at each model synapse is nves � 5. Furthermore,
we adopt the uni-vesicular release hypothesis, by which at most one
vesicle from the given presynaptic terminal can be fused during a
successful release event (Dobrunz and Stevens 1997). After being
released, a new vesicle becomes available for release with probability
dt/�r, where �r is the time constant of RRP replenishment. The rate
with which RRP is replenished had been estimated to vary from 0.1
s�1 to 0.5 s�1, depending on experimental conditions (such as
extracellular calcium concentration) and history of synaptic activity
(Dobrunz and Stevens 1997; Garcia-Perez and Wesseling 2008;
Stevens and Tsujimoto 1995). In addition, calcium-induced augmen-
tation can effectively mask slow stochastic recovery, thus leading to
a very fast, step-like, rebound from depression (Garcia-Perez and
Wesseling 2008). In the model, unless otherwise indicated, we as-
sumed that, after a successful fusion, a vesicle becomes unavailable
for �TR � 2 s. This assumption represents an approximation of

biological stochastic recovery process, yet it allows us to significantly
reduce the computational load associated with explicit modeling of
many stochastic processes. The general validity of our conclusions
(high variability of spiking for model neurons with active dendrites vs.
relatively low variability of spiking for model neurons with passive
dendrites) was tested in preliminary simulations that used the model
with stochastic (�r � 5 s) replenishment of the RRP.

This model of stochastic synaptic transmission at CA3–CA1 syn-
apses captures both synaptic short-term facilitation and short-term
depression. Facilitation of release probability occurs because of the
slow unbinding of Ca2� ions from the calcium gates at the presynaptic
active zone (Bertram et al. 1996). Depression of synaptic response is
prominent for high stimulation frequencies because each release zone
possesses only a finite number of docked vesicles (Dobrunz and
Stevens 1997). This model of facilitation/depression is in accordance
with known biophysical mechanisms underlying these two phenom-
ena (Zucker and Regehr 2002). A completely deterministic synapse
(reliably releasing quantum of transmitter following each incoming
AP), stimulated with uncorrelated Poisson spike-trains at rate v,
depresses for v � nves/�r. However, in a model of activity-dependent
stochastic release, the frequency nves/�r can only be considered as a
lowest frequency above which stochasticity and correlations can lead
to nontrivial variability of release.

Cell characteristics

Because the interactions between ionic currents within a dendritic
branch depend on the spatial organization of the dendrites, we used
the morphology of a reconstructed CA1 pyramidal neuron (cell
c20466, available at www.neuromorpho.org) (Ishizuka et al. 1995).
This cell had the following characteristics: the surface area of the
entire dendritic tree was 23,162 �m2; the surface area of the soma was
358 �m2; the surface area of entire main trunk was 6,089 �m2; and
the surface area of the proximal portion of the apical dendrite (1st 350
�m from soma) was 1,500 �m2. In proximal apical dendrites of CA1
pyramidal neurons, there was one synaptic terminal per spine, and the
spine density was 	0.5 spines/�m (Andersen et al. 2007). In the
computational model, 103 synapses were distributed over the branches
of proximal apical dendrites in the following way. First, a random
branch was picked with probability proportional to its length. Then,
the location of synaptic terminal within the branch was determined.
This procedure (of length-biased branch selection) ensured that the
density of model synaptic terminals would be the same in long and
short branches. However, because of the compartmental approxima-
tion, the actual number of synapses per micron fluctuated, as shown in
Fig. 1F. To account for the presence of spines, the surface area of
dendritic tree was increased, assuming individual spine area of 0.28
�m2 and uniform density of 0.5 spines/�m (Harris et al. 1992;
Maletic-Savatic et al. 1999).

Specification of channel composition

Dendritic trees of CA1 pyramidal neurons possess a variety of active
dendritic conductances, which are often nonuniformly distributed along
the tree and can display activation/inactivation on a variety of time scales
(Magee and Johnston 1995; Mainen and Sejnowski 1998; Migliore and
Shepherd 2002). Here, we used standard compartmental modeling tech-
niques to simulate dynamics of reconstructed CA1 pyramidal neurons
with biophysically realistic passive and active properties.

The model incorporated several types of voltage-gated currents: a fast
Na� current, INa (Magee and Johnston 1995; Migliore et al. 2005); a
noninactivating delayed rectifier K� current, IKdr (Hoffman et al. 1997;
Migliore et al. 1999); a transient A-type K� current, IKa (Hoffman et al.
1997; Migliore et al. 1999); a slow, noninactivating K� current, IKm

(Mainen and Sejnowski 1998); a nonspecific hyperpolarization-activated
cation current, Ih (Lorincz et al. 2002; Magee 1998; Migliore et al. 2005;
Poolos et al. 2002); and a slow Ca2�-activated afterhyperpolarization

TABLE 1. Rates of calcium binding and unbinding for different
gates in Bertram-Sherman-Stanley model of synaptic transmitter
release

Binding Rate, �M/ms Unbinding Rate, ms�1

k1
� � 3.75 �10�3 k1

� � 4 �10�4

k2
� � 2.5 �10�3 k2

� � 10�3

k3
� � 5 �10�4 k3

� � 0.1
k4

� � 7.5 �10�3 k4
� � 10
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(AHP) K� current, IK
sAHP (Mainen and Sejnowski 1998; Poirazi et al.

2003a). Activation properties of the A-type K� current in the dendrites of
CA1 pyramidal neurons were dependent on location: IKa activation in
distal dendrites was hyperpolarized by 12 mV compared with the voltage
dependence in the soma and proximal dendrites (Hoffman et al. 1997).
Activation/inactivation curves and time constants of activation/inactiva-
tion variables of different channels that we used are provided in Supple-
mentary Materials.1

Calcium excitability was accounted for by incorporating two types of
Ca2� currents: a high-voltage activated L-type Ca2� current, ICa

HVA

(Mainen and Sejnowski 1998; Poirazi et al. 2003a; Westenbroek et al.
1990), and voltage-activated R-type Ca2� current, ICa

R (Mainen and

Sejnowski 1998; Poirazi et al. 2003a). Calcium extrusion was modeled as
a linear process with the equilibrium level of cs � 0.1 �M and an
extrusion time constant of �Ca � 200 ms (Poirazi et al. 2003a)

d�Ca2��i

dt
�

cs � �Ca2��i

�Ca

(3)

Diffusion and buffering of calcium ions were not incorporated into
the model for the following reasons: First, Schaffer collaterals in
pyramidal neurons project onto dendritic spines, which act as chem-
ical compartments, allowing localized dynamics of [Ca2�]i that does
not, or very weakly, affect nearby synaptic terminals (Yuste and Denk
1995). Moreover, even in aspiny synapses, dendritic calcium tran-
sients evoked by quantal release of synaptic transmitter are usually1 The online version of this article contains supplemental data.

FIG. 1. CA1 pyramidal cell model. A: the reconstructed dendritic tree of a CA1 pyramidal neuron. Model synapses were distributed only on the proximal 350
�m of the apical dendrite (bright region) to mimic Schaffer collateral inputs. B: spatially nonuniform distributions of active conductances in the dendritic tree.
Conductance values scaled relative to values at soma. C: action potential (AP) back-propagation into dendritic tree. Amplitude as a function of distance from
the soma for different values of maximal dendritic A-type potassium channel conductance. Circles, baseline model; solid line, model with g�Ka scaled by 1.5;
dashed line, model with g�Ka scaled by 0.5. D: the extent of dendritic spike propagation, measured as the maximal membrane potential in dendritic compartments
that neighbored the stimulated compartment. Dendritic spikes propagated for a typical distance of 80 �m and could evoke significant changes in local dendritic
calcium concentration. Shown are examples for 2 different apical dendritic compartments. Right: examples of membrane voltage and calcium concentration in
the stimulated dendritic compartment (left) and the compartment that is distal to the stimulated one (right). E: an example of back-propagating APs elicited by
a current step applied to somatic compartment. Back propagating action potentials (BPAPs) reliably propagated to proximal but not to distal apical dendritic
compartments (see C). F: scaling of synaptic conductance with the distance from soma (circles) and the best quadratic fit (solid line): y � 10�2 
 (a � bx �
cx2) nS, with a � 3.7981, b � �0.0583, and c� 3.318 
 10�4. G: distribution of linear synaptic density (number of synapses in the branch per branch length).
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localized because of the action of calcium buffers (Murthy et al.
2000). Nonetheless, intense synaptic stimulation could produce cal-
cium-mediated cross-talk between adjacent synapses; however, the
presynaptic depression in the model significantly reduced the possi-
bility that persistent stimulation could lead to persistent synaptic
release. We therefore did not include dendritic calcium diffusion and
buffering in the model, which would have significantly increased the
computational complexity of the simulations.

In most of the simulations, we used a standard model of the slow,
apamine-insensitive, AHP currents in CA1 pyramidal neurons
(Poirazi et al. 2003a), which assumes that the activation variable of
the slow AHP (sAHP) channel is a direct function of calcium con-
centration. In this model, the “slowness” of sAHP is primarily deter-
mined by the time-course of calcium transient. Because the identity of
the potassium channel underlying the sAHP in hippocampal pyrami-
dal neurons is still unknown, we assessed the general validity of our
results by performing preliminary simulations with two additional
models of the sAHP.

In the first model (Traub et al. 2003), the evolution of the fraction
of open sAHP channels, m, was described by the differential equation

dm

dt
� � � �Ca2�� � �1 � m� �

m

�m

(4)

with � � 20/s/mM and �m � 1 s. Compared with our baseline model
of sAHP, the decay of adaptation here was not dependent on calcium
concentration and was much slower.

Another, more detailed, model of sAHP described the activation of
calcium-dependent potassium channel as a four-stage stochastic pro-
cess (Sah and Clements 1999)

R-|0
4rb

ru

CaR-|0
3rb

2ru

2CaR-|0
2rb

3ru

3CaR-|0
rb

4ru

4CaR-|0
ro

rc

O (5)

Following Sah and Clements (1999), the reaction rates here were rb �
10 �M/s, ru � 0.5/s, ro � 600/s, rc � 400/s.

In some simulations (Fig. 4), active conductances were removed from
dendritic compartments to test the transfer properties of a model neuron
with a passive dendritic tree. Removal of active conductances resulted in
an increase in neuronal firing rate. To make the firing rate of the passive
model neuron comparable to its firing rate in at least some of the active
conductances scenarios, the membrane resistivity in dendritic compart-
ments was reduced twofold to Rm � 14 K
 �cm2.

Spatial distribution of active mechanisms

Active conductances are often nonuniformly distributed throughout
the dendritic structure. This property is crucial for the information-
processing capabilities of the dendritic tree, because it enables the
neuron to distinguish between different spatio-temporal input patterns
and thus can serve as a cellular level implementation of pattern
recognition (Reyes 2001; Williams and Stuart 2003). Based on the
existing experimental observations, a CA1 pyramidal neuron was mod-
eled with realistic distributions of active conductances (Tables 2 and 3;
Fig. 1, A and B, for spatially nonuniformly distributed conductances;
Supplementary Figures for all conductances). The resulting model of
CA1 pyramidal neuron exhibited some of the well-known features of real
neurons. For example, somatic step-like current stimulation generated

back-propagating APs that could reach proximal apical, but not distal,
dendrites, and the extent of back propagating action potential (BPAP)
invasion into dendritic tree could be controlled by the level of
dendritic A-type potassium conductance (Fig. 1, C and E) (Golding et
al. 2001). The model neuron also supported local dendritic sodium
spikes that could spread to a limited distance (	80 �m) from the site
of stimulation (Fig. 1D).

Synaptic conductance and synapse density

In apical dendrites of CA1 pyramidal neurons, the electrotonic
decay of the postsynaptic response is partially compensated by in-
creased synaptic conductance. As a result, somatic excitatory postsyn-
aptic potential (EPSP) peak value is approximately independent of
synaptic location, because the local EPSP amplitude increases as
nearly a quadratic function of distance from the soma (Magee and
Cook 2000). The exact quantitative relation between the height of
synaptic conductance and its distance from the soma is, of course,
unique to a specific neuron, and depends on the details of neuronal
morphology, as well as on the distribution of its passive and active
mechanisms. To recover this relation, we positioned model synapse at
progressively increasing distances from the soma, and tuned the
values of local synaptic conductances to yield 0.2 mV somatic
depolarization on synaptic stimulation (assuming that presynaptic
stimulation reliably leads to transmitter release) (Li and Ascoli 2006).
The resulting set of (distance, weight) points were fitted with a
second-degree polynomial function.

The set of weights as a function of distance from the soma is shown
in Fig. 1E. The values of synaptic conductances on the apical den-
drites varied from 	50 pS/�m2 (for synapses proximal to soma) to
	300 pS/�m2 (for synapses further away from soma). Assuming
postsynaptic density area �1 �m2 and �V � 60 mV, the magnitude
of the synaptic currents are IAMPA � 3–18 pA. This range of values
is consistent with the measured values of average synaptic potency for
CA3–CA1 synapses (14 � 7 pA) (Dobrunz and Stevens 1997).

Analysis of neuronal gain and spike time-series variability

Neuronal gain is defined as a ratio of neuronal firing rate (output)
to input rate, and gain modulation refers to the changes in the
functional relation between input and output rates.

As a measure of output spiking activity, we used the averaged instan-
taneous output rate, defined as �ISI�1�, with the averaging performed
over all interspike intervals (ISIs) in the spike train. This measure
becomes identical to the mean rate in the limit of a regular spike train.

The variability of spike time series is usually assessed using the
CV � �(ISI)⁄�(ISI) of ISI series (Gabbiani and Koch 1998); however, as
noted elsewhere (Gabbiani and Koch 1998; Holt et al. 1996), the CV
fails to provide an accurate estimate of ISI variability when the mean
firing rate of a neuron changes over time. As we show later, this is
exactly what happens in our model of the CA1 pyramidal neuron
driven by a large number of stochastic inputs arriving from plastic

TABLE 2. Parameter values for passive dendritic properties used
in the model

Membrane capacitance C 1 �F/cm2

Membrane resting voltage Erest �65 mV
Axial resistivity Raxial 180 
 �cm
Surface resistivity Rmembrane 28 K
 �cm2

TABLE 3. Values of active conductances that have been used in
modeling of somatic and axonal compartments

Active Conductance Soma Axon

gNa 200 400
gKdr 100 100
gKa 250 250
gKm 0.1 —
gsAHP 1.0 —
glh 0.5 —
gCa

HVA 12 —
gCa

R 15 —

All conductances are given in pS/�m2.
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synaptic terminals. Variability in the spiking activity of this cell might
arise from transient rate adaptation (because of the activation of sAHP
conductance) or as a result of intermittent periods of silence during
which most of the synaptic neurotransmitter vesicles are not being
released. We used here an alternative measure, devised to specifically
overcome the undesirable effect of a slowly modulated firing rate
(Holt et al. 1996). This measure is defined as

CV2 � 2 � ��ISIi�1 � ISIi�
ISIi�1 � ISIi

�
i

(6)

where the average is taken over all pairs of consecutive ISIs. The case
CV2 � 0 corresponds to a completely regular spike train, and it can
be shown (Holt et al. 1996) that for a spike train described by the
Poisson process, CV2 is equal to 1 (as is the CV).

To provide the connection between membrane voltage trajectories
and the observed variability in spike time series, we used the frame-
work developed by Troyer and Miller (1997). In this view, the
variability of spike time series is determined by the fraction of ISI that
the neuron spends in the steady-state regimen (after complete recov-
ery from postspike AHP). To compute the time of ISI settling in
the steady state, we first computed the mean postspike membrane voltage
trace by averaging over voltage trajectories of all ISIs. Next, the discrete

derivative
�V

�t
�

V�t � �t� � V�t�

�t
of the mean postspike voltage

was computed and smoothed by averaging over the running window
(10–80 ms wide, �t � 0.1 ms). The first time (after the peak of

postspike AHP) at which the smoothed
�V

�t
attained the value of zero

was taken as the time of ISI settling in the steady-state regimen and
also defined the duration of postspike AHP.

Numerical simulations

All simulations were performed with the NEURON program (Hines
and Carnevale 2001). Cable and synaptic dynamics were solved with
the time step �t � 10 �s. On a Linux workstation with a 2-GHz
processor, 1 s of simulation took 	30 min.

Channel kinetics

We provide here the kinetics of all ionic currents that were used in
our modeling of the CA1 pyramidal neuron (graphs of steady-state
activation, inactivation, and time constants as a function of voltage are
available in Supplementary Materials). In the following, time con-
stants �x are given in units of milliseconds, the voltage values are in
units of millivolts, and current densities are in �A/cm2. The indices
used to designate activation/inactivation variables are described by
different equations for different ionic current, e.g., mNa � mK.

Sodium current:

INa � gNam
3h�V � ENa�; ENa � 55mV; ṁ � �m� � m�/�m;

ḣ � �h� � h�/�h

m� � �m/��m � 	m�; �m � 0.4�V � 30�/�1 � exp���V � 30�/7.2��

�m � 0.5/��m � 	m�; 	m � 0.124�V � 30�/�exp��V � 30�/7.2� � 1�

h� � 1/�1 � exp��V � 50�/4��; �h � 0.03 �V � 45�/

�1 � exp���V � 45�/1.5��

�h � 0.5/��h � 	h�; 	h � 0.01�V � 45�/�exp��V � 45�/1.5� � 1�

Delayed rectifier potassium current:

IKdr � gKdrm�V � EK�; EK � �90mV; ṁ � �m� � m�/�m;

m� � 1/�1 � �m�

�m � 50	m/�1 � �m�; �m � exp��0.11�V � 13��;

	m � exp��0.08�V � 13��

A-type potassium current in proximal dendrites (
100 �m):

IKa � gKamh�V � EK�; EK � �90mV; ṁ � �m� � m�/�m;

ḣ � �h� � h�/�h

m� � 1/�1 � �m�; �m � exp��0.038�1.5 � 1/

�1 � exp��V � 40�/5����V � 11��

�m � 4	m/�1 � �m�; 	m � exp��0.038�0.825 � 1/

�1 � exp��V � 40�/5����V � 11��

h� � 1/�1 � �h�; �h � 0.26�V � 50�; �h � exp�0.11�V � 56��

A-type potassium current in distal dendrites (�100 �m):

IKa � gKamh�V � EK�; EK � �90mV; ṁ � �m� � m�/�m;

ḣ � �h� � h�/�h

m� � 1/�1 � �m�; �m � exp��0.038�1.8 � 1/

�1 � exp��V � 40�/5����V � 1��

�m � 2	m/�1 � �m�; 	m � exp��0.038�0.7 � 1/

�1 � exp��V � 40�/5���V � 1��

h� � 1/�1 � �h�; �h � 0.26�V � 50�; �h � exp�0.11�V � 56��

Nonspecific hyperpolarization activated cation current:

Ih � ghm�V � Eh�; Eh � �30mV; ṁ � �m� � m�/�m;

�m � 90	m/�1 � �m�

m� � 1/�1 � exp��V � 81�/8��; �m � exp�0.08316�V � 75��;

	m � exp�0.033264�V � 75��

Slow, noninactivating, potassium current:

IKm � gKmm�V � EK�; EK � �90mV; ṁ � �m� � m�/�m

�m � 1/��m � 	m�; �m � 0.001�V � 30�/�1 � exp���V � 30�/9��

m� � �m/��m � 	m�; 	m � �0.001�V � 30�/�1 � exp��V � 30�/9��

High-voltage activated L-type calcium current:

ICa
HVA � gCaLm

2h�V � ECa�; ECa � 140mV; ṁ � �m� � m�/�m;

ḣ � �h� � h�/�h

m� � �m/��m � 	m�; �m � �0.055�V � 27�/

�exp���V � 27�/3.8� � 1�

�m � 1/��m � 	m�; 	m � 0.94 exp���V � 75�/17�
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h� � �h/��h � 	h�; �h � 0.000457 exp���V � 13�/50�

�h � 1/��h � 	h�; 	h � 0.0065/�exp���V � 15�/28� � 1�

R-type calcium current:

ICa
R � gCam

3h�V � ECa�; ECa � 140mV; ṁ � �m� � m�/�m;

ḣ � �h� � h�/�h

�m � 50ms; m� � 1/�1 � exp���V � 44�/3��

�h � 5ms; h� � 1/�1 � exp��V � 49�/1��

Slow afterhyperpolarizing potassium current:

IsAHP � gsAHPm
3�V � EK�; EK � �90mV; ṁ � �m� � m�/�m

m� � �Ca2��2/��Ca2��2 � 0.0252�; �m � 0.0252/�0.03��Ca2��2

� 0.0252��

R E S U L T S

Synaptic transmitter release model

The reconstructed dendritic tree of a CA1 pyramidal neuron
was used for all of the simulations presented here (see METH-
ODS). The compartmental model of the dendritic tree included
active currents governed by Hodgkin-Huxley kinetics. Excita-
tory synapses were located on the apical dendritic branches.
There were no inhibitory synapses (Fig. 2A).

One of the main goals was to study the impact of presynaptic
short-term plasticity on the properties of postsynaptic neuronal
firing patterns. A visual inspection of Fig. 2B suggests that,
when subjected to random uncorrelated series of APs, model
synapses responded with complex, irregular, patterns of suc-
cessful vesicle releases. To further characterize the transfor-
mation of different signals by presynaptic plasticity, we probed
model synaptic responses to AP series of increasing random-
ness (but all delivered at the same mean rate). As is shown in
Fig. 2C1, synaptic plasticity increased the variability of release
events, with higher rate inputs to the synapses leading to more
irregular response. Induction of variability in synaptic re-
sponses did not significantly depend on the level of calcium
flux into the synapse (Fig. 2C2) but showed strong dependence
on the value of the replenishment time �TR (Fig. 2C3), sug-
gesting that depression is a dominant factor in the generation of
highly variable synaptic responses.

Next, we used rhythmic stimulation patterns and matched the
responses of our model to experimental measurements at CA3–
CA1 hippocampal synapses (Dobrunz and Stevens 1997). The
stimulus used here was a 10-Hz train of 20 regularly spaced
stimuli, repeated over 100 model synapses. Figure 2, D1 and D2,
shows that, depending on the values of synaptic parameters (such
as the maximal number of vesicles in readily releasable pool
and/or magnitude of calcium influx into the synapse), the model
synapses exhibited facilitation followed by depression. The re-
sponse typically became strongest after three to five stimuli, in
agreement with Fig. 4C of Dobrunz and Stevens (1997). Halving
the ISI did not significantly change the facilitating part of the
response but led to a quicker onset of depression (Fig. 2D5).

The response also depended on the rates of calcium unbind-
ing from the synaptic gate. For example, setting all of the
unbinding rates to be equal to the slowest one (i.e., to k1

�)

resulted in a strong response to the first stimulus (Fig. 2D3) and
a significant level of asynchronous release (data not shown)
that acted to quickly deplete the vesicular pool and virtually
block all responses to subsequent stimuli. Setting all of the
unbinding rates to be equal to the fastest one (i.e., to k4

�)
resulted in no facilitation and very low (close to 0) probability
of release (data not shown) because the probability of having
fully occupied gate sites was small. Consistent with this, when
the unbinding rates were set to the second fastest rate (i.e., to
k3

�), there was significant probability of release for most of the
stimuli (Fig. 2D3).

To test the effect of the RRP replenishment time on model
synaptic response, we performed simulations of the model with
stochastic replenishment of RRP (in a model with fixed replen-
ishment time, the response to a rhythmic stimulation yielded
the same results as long as the stimulation period was smaller
than the fixed replenishment time, �TR; Fig. 2D4). In general,
increasing the replenishment time decreased the probability of
observing synaptic vesicle release in response to stimulation.

Finally, we tested how the paired-pulse ratio (PPR) in our
model depends on the characteristics of synaptic terminal. A
change in the synaptic calcium signal (while keeping the number
of vesicles fixed) led to a change in the PPR but had nearly no
effect on its trial-to-trial variability (Fig. 2, E1 and E2). In
contrast, the same kind of manipulation but with a larger number
of vesicles per synapse led to a change in the PPR and also
affected its trial-to-trial variability (Fig. 2, E3 and E4).

Processing of synaptic signal by CA1 pyramidal neurons
depends on the extent of synaptic depression/facilitation

Previous studies of synaptic integration driven by a large
number of synaptic inputs have assumed that the statistics of
synaptic release events followed the statistics of presynaptic
spikes, which are often modeled as a Poisson process (Li and
Ascoli 2006). However, presynaptic short-term plasticity affects
input-output properties in a way that cannot be captured with
simple Poisson-like spike trains; indeed, in our model, uncorre-
lated Poisson input spike trains were transformed into highly
correlated sequences of successful releases (Fig. 2C). How are
these temporally correlated release patterns processed by the
dendritic trees in CA1 pyramidal neurons? To gain insight, we
analyzed the responses of the model CA1 pyramidal neuron
subject to input stimuli transformed by the model synapses.

The membrane potential in the dendritic compartments was
highly irregular as was the output spike train in the soma (Fig. 3A).
The firing rate of the neuron, shown in Fig. 3B, increased with
the input firing rate, in accordance with previous studies (Li
and Ascoli 2006). However, the output spike time series had
unusually high variability (Fig. 3C). The degree of output
variability depended on the presynaptic depression. At a given
input rate, the variability measure CV2 (see METHODS for defi-
nition) of output spike time series of model pyramidal neuron
was highest for short-term synaptic depression with a long
recovery time (high Ca2� influx) and lower for shorter recov-
ery times (Fig. 3C).

The effect of depression depended on the input frequency.
When plotted versus output rate, the output variability tended
to be smaller at lower output (input) rates than for higher
output (input) rates, as shown for the high Ca2� influx case
(circles) in Fig. 3C. This was unexpected, given that in cortical
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neurons (Softky and Koch 1993) as well as in simple one-
dimensional integrate-and-fire models (Troyer and Miller
1997), the variability of spiking goes down with increasing
output rate. In contrast, the output variability for a neuron
having synapses with much faster recovery time (squares)
decreased with increasing input rates.

Next, we wanted to assess the effect of facilitation on the
firing rate and variability of our model pyramidal neuron.
Facilitation (changes in vesicle release probability caused by
enhanced binding of calcium to sensors) in our model de-
pended on the strength of presynaptic calcium signal (Fig.
2D2). As Fig. 3C shows, strong variations in the magnitude of

the presynaptic Ca2� signal had relatively small effect on the
irregularity of neuronal spike trains. However, reduction of
release probability (by lowering Ca2� flux) led to a decrease in
the output rate (Fig. 3B).

Softky and Koch (1993) pointed out that nonstationarity
introduced by spike frequency adaptation may distort the
results of variability analysis. To check the general validity of
our conclusions regarding the variability of spiking, we sepa-
rated the data set for each simulation scenario into two subsets
of fast (�200 ms) ISIs and slow (�200 ms) ISIs. Figure 3D
shows CVs for fast/slow subsets of ISI series, plotted for
different simulation scenarios and different input rates (scat-

FIG. 2. Model for synaptic transmission. A: schematic modeling paradigm: uncorrelated Poisson input spike trains, transformed by a model of short-term
presynaptic plasticity, activate fast excitatory currents at synapses on the dendrites of a multicompartmental model of a CA1 pyramidal neuron. B: top: rastergram
showing a series of successful quantal releases for 100 model synapses that were stimulated by uncorrelated Poisson spike trains at an input rate vin � 2 Hz.
Bottom: synaptic activity histogram (fraction of synapses releasing in the same temporal bin). C: transfer properties of the model for stochastic synaptic response.
In all plots, dashed lines represent the response of a deterministic synapse. C1: when stimulated with spike trains of different variability (from completely regular
to pure Poisson), model synapses generated stochastic responses that could be captured by relatively high values of variability measure, CV2, applied to the series
of inter-release intervals. The extent of variability in inter-release intervals depended on the input frequency, with higher-rate inputs causing more variable
synaptic responses at all levels of input irregularity. C2: the variability of synaptic inter-release series only weakly depended on the level of calcium flux into
model synaptic terminals. C3: variability could be controlled by changing the value of recovery time �TR (labeled on curve) from synaptic depression. Data
points in all plots are averages over 50 model synapses. D: model synaptic responses to rhythmic stimulation. Periodic trains of 20 stimuli at 10 Hz were applied
as in Dobrunz and Stevens (1997). The shape of the response curve could be controlled by changing the number of vesicles per model synaptic terminal (as shown
in D1 for fixed calcium signal, Ca2� � 0.2), by changing the strength of synaptic calcium signal (as shown in D2 for fixed number of vesicles per synaptic
terminal, Nves � 3), by changing the rates of calcium ion unbinding from the sensor (as shown in D3 for Nves � 3, Ca2� � 0.1), or by changing the recovery
time from synaptic depression (as shown in D4 for Nves � 3, Ca2� � 0.1, and stochastic recovery model of synaptic transmission). D5: decrease in the
interstimulus interval from 100 to 50 ms led to faster onset of depression, which only weakly affected timing of the peak synaptic response. All values are
averages and their SE. E: characteristics of paired-pulse ratio, defined as a change in response to a 2nd stimulus relative to the 1st plotted vs. the
interstimulus interval (ISI) for different manipulations of synaptic parameters. E1: averaged paired-pulse ratio and SE. Circles, Nves � 3, Ca2� � 0.1;
squares, Nves � 3, Ca2� � 0.2. E2: trial-to-trial variability of paired-pulse ratios shown in E1. E3: averaged paired-pulse ratio and SE. Circles, Nves �
3, Ca2� � 0.1; squares, Nves � 3, Ca2� � 0.2. E4: trial-to-trial variability of paired-pulse ratios shown in E3.
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ter). As can be seen, the baseline model (circles) and the model
with low calcium signal (diamonds) exhibited much stronger
variability for both fast and slow ISIs than did the model with
mild depression (squares). Also note that for the short ISI
subset, the degree of variability exhibited by both baseline and
“low calcium” models was an increasing function of output
rate, whereas in the case of the model with mild depression the
variability decreased for higher output rates. This analysis
suggests that high variability of firing that is observed in our
model neurons is a generic feature rather than an artifact that
could arise because of the specific methods of analysis.

To assess the robustness of the high variability of neuro-
nal spike time series in the presence of large number of

synaptic inputs with respect to the detailed neuronal mor-
phology, we simulated another reconstructed pyramidal
neuron (cell geo5038804, available for download from www.
neuromorpho.org). The simulations shown in Fig. 3H con-
firm that the variability of spike time series was not a
consequence of the specific details of a single pyramidal
neuron. The variability of the postsynaptic firing patterns in
both morphologies depended on the short-term presynaptic
depression.

Finally, we performed another test to probe the effect of
vesicle release facilitation on the firing rate and variability in
our model neuron. Because facilitation in our model synapses
depended on the rate of synaptic calcium unbinding, we rea-

FIG. 3. Presynaptic plasticity modulates the rate and the variability of firing in a model of a CA1 pyramidal neuron. A: membrane potential in different
compartments of a model pyramidal neuron firing in response to Schaffer collaterals stimulation. Top: secondary branch of apical dendrite (300 �m away from
soma). Middle: main trunk of apical dendrite (100 �m away from soma). Bottom: somatic compartment. Synaptic inputs were uniformly distributed over the 1st
350 �m from soma (green region of the reconstructed dendritic tree). B: firing rate of a model neuron as a function of input rate of spikes arriving at model
presynaptic terminals: Baseline model with high presynaptic Ca2� influx and long recovery time from depression (black circles); model with lower presynaptic
Ca2� influx (green diamonds); and model with weaker synaptic depression, as captured by shorter recovery time (red squares). Stars are for the model with
stochastic recovery from synaptic depression. C: firing variability measure, CV2, as a function of output firing rate, for the 3 scenarios shown in B. D: CV of
interspike interval series plotted vs. the mean ISI, for different scenarios in which ISIs were partitioned into 2 groups of short and long intervals. Scatter points
are for different frequencies of synaptic stimulation. Symbols are the same as for B. E: top: mean postspike somatic membrane voltage plotted vs. the fraction
of ISI traversed for different scenarios of synaptic plasticity. In all plots, thin black traces are for 2-Hz synaptic stimulation, and thick black traces are for synaptic
stimulation at 20 Hz. Bottom: fraction of ISI in the steady-state regimen plotted vs. the stimulation rate of model synapses for each of the model scenarios shown
in the top panels. F: output firing rate plotted vs. input rate for a model in which all synaptic calcium binding/unbinding rates were equalized to the slowest value
(solid line) or the fastest value (dashed line). Circles show the results obtained for the baseline model, with heterogeneous binding/unbinding rates. Stars are for
the model with stochastic recovery from synaptic depression. G: variability measure plotted vs. input rate for all conditions shown in F. H: variability measure
of ISI for the pyramidal neuron model used in the rest of this study (neuron 1) compared with the variability measure for another reconstructed pyramidal neuron
(neuron 2) obtained for the same level of synaptic stimulation.
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soned that a change in unbinding rates might provide us with
hints to how facilitation impacts variability. We performed two
tests. In the first set of simulations with strong facilitation, all
calcium unbinding rates were equalized to the slowest one,
whereas in a second set of simulations, with weak or no
facilitation, we equalized all the unbinding rates to the fastest
one among the four rates shown in Table 1. Results of these
simulations are summarized in Fig. 3, F and G. Setting all
unbinding rates to either slow (solid line) or fast (dashed line)
values decreased the output firing rate. However, variability of
spiking was affected differently by the different manipulations on
gating: for a model with all slow rates, the CV2 measure attained
slightly higher values than for a model with all fast rates.

Troyer and Miller (1997) developed a simple framework to
explain spike time series variability in cortical neurons. Ac-
cording to this framework, the dynamics of membrane voltage
during an ISI can be divided into three qualitatively different
phases: the initial refractory phase in which the neuron is
recovering from the previous spike and firing is completely
described using arguments based on 1�Ns; the final steady-
state regimen in which the “memory” about the last spike has
decayed and in which spike generation is determined solely by
input statistics; and the intermediate phase of partial recovery
from postspike AHP, linking between the 1/ �Ns and steady-state
regimens. The variability of ISI series is determined by the
relative contribution from each of these regimens (the fraction
of mean ISI spent in these regimens). In particular, the vari-
ability of ISI should be higher if a larger fraction of the ISI is
spent in the steady-state phase, during which the time of the
next spike is determined solely by the fluctuation in synaptic
input. Note also that this analysis explains the contribution of
postspike AHP to spike time series variability, but variability
can also be affected by the changes in input (i.e., input statistics
in the steady-state phase). We applied this framework to our
model.

The benchmark model neuron spent less time in postspike
hyperpolarization phase with high rates of inputs than for low
rates (Fig. 3E, left top and bottom). Therefore even though the
mean ISI was larger for low-rate inputs, the fraction of the ISI
in the steady-state regimen was larger for the case of neuron
driven by high rate inputs (Fig. 3E, left bottom), leading to
more variable spike time series. In the model with weaker
depression, the fraction of ISI in the steady-state regimen
significantly decreased with increasing input rate (Fig. 3E,
middle top and bottom, cf. Fig. 3E, left). On the other hand, the
reduced synaptic calcium signal increased the time to the next
spike, thus reducing the firing rate, but not significantly chang-
ing the fraction of ISI in the steady-state regimen, and thus had
little or no effect on the spike time series variability (Fig. 3E,
right top and bottom). This analysis is consistent with the
intuitive picture in Troyer and Miller (1997).

These observations suggest that different aspects of presyn-
aptic short-term plasticity affect the spike train of a pyramidal
neuron with active dendrites in different ways. Fast vesicular
turnover increased the output firing rate and reduced the spike
train variability at higher input rates. Significantly lowering the
probability of transmitter release reduced the output rate, but
did not significantly affect the variability of output spike train.
Reducing the time of relaxation from facilitation (by setting all
of the calcium unbinding rates to the fastest one) acted to lower
the variability of output firing, but also acted to decrease the

firing rate. Thus the gain and irregularity depended on the
relative contribution from short-term presynaptic depression
(changes in RRP size and/or vesicle recovery time) and short-
term facilitation (Ca2�-mediated modulation of individual ves-
icle release probability). Because the variability could be
changed by manipulations of synaptic plasticity parameters and
because active dendritic conductances are known to affect
neuronal input-output properties (Reyes 2001), the above re-
sults led us to investigate the contribution of these conduc-
tances to spike time series variability.

Dendritic processing of synaptic plasticity depends on the
balance between fast inward and outward currents

How was it possible for our model pyramidal neuron to
preserve output variability despite a large number of excitatory
synaptic inputs? When all active conductances were removed
from the dendritic compartments, the output spikes from the
model neuron became highly regular, as shown in Fig. 4B
(closed black circles). The output firing rate, shown in Fig. 4A,
quickly saturated, notwithstanding the presence of presynaptic
depression. In addition, simulations of a point neuron driven by
nonplastic synapses yielded much lower spiking variability
than did the baseline model with the dendritic tree and plastic
synapses at a comparable output rate (Fig. 4, A and B, black
crosses). Thus while synaptic depression helped to reduce the
excitatory drive and introduced significant fluctuations into
release series, in itself it was not sufficient to elicit highly
variable firing, suggesting that postsynaptic dendritic mecha-
nisms might also be involved.

Furthermore, simulations of a neuron that had only fast inward
and outward conductances (excluding the Ca2� and slow Ca2�-
activated K� currents) in its dendritic tree yielded a significantly
higher firing rate (compared with the baseline model) but also
reduced the irregularity of the output spike train of the full model
(Fig. 4B, squares). On the other hand, a complete removal of the
nonspecific hyperpolarization-activated depolarizing current, Ih,
from dendritic compartments only insignificantly affected the
firing characteristics of a model neuron (Fig. 4, A and B, closed
diamonds). This suggests that, in addition to local inhibitory
control (Liu 2004), the sensitivity of a neuron to synaptic fluctu-
ations might, at least in part, be controlled by the activation of
intrinsic conductances in its dendritic branches (Wilson and
Kawaguchi 1996). Because inhibition was absent in our model,
the control of this input sensitivity might be achieved, for exam-
ple, by varying the ratio between fast inward/outward active
conductances. Indeed, halving the magnitude of the A-type K�

conductance increased the output firing rate and acted to decrease
the spike time series variability of the model CA1 neuron (Fig. 4,
A and B, green diamonds). More generally, the rate and irregu-
larity could be controlled by changing the expression of dendritic
sodium channel conductance and A-type potassium channel con-
ductance (Fig. 4, C1 and C2). Sample traces of somatic membrane
potential for these different scenarios are shown in Fig. 4D. Thus
the capability of intrinsic conductances to modulate dendritic
excitability of our pyramidal neuron could help to maintain its
overall sensitivity to the plastic, activity-dependent changes in
release properties of its afferent synapses.

To understand how active conductances (and in particular
potassium channels) contributed to high ISI variability, we again
used the mean ISI analysis of Troyer and Miller (1997). As Fig.
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4E (3rd left panel) shows, for all input rates considered, the
fraction of ISI spent in the steady-state regimen was higher
for the baseline model than for the model with reduced
expression of dendritic KA conductance. This increase in
fractional occupancy in the steady-state regimen could in
principle be explained by a decrease in the duration of
postspike AHP; however, a plot of the postspike AHP
duration versus synaptic stimulation rate showed that a
reduced expression of dendritic KA conductance caused a

reduction in the duration of postspike AHP (Fig. 4F). This
suggests that the dominant effect of reduced dendritic KA
conductance is to shorten the duration of the ISI (as is
manifested by higher firing rate; Fig. 4A), because of the
stronger fluctuation in synaptic signal that makes spike-
threshold crossing more probable and regularizes the spike
time series (Fig. 4G). As Fig. 4, E–G, shows, the same
arguments can be applied to explain the effect of dendritic
Na conductance on spike time series variability. Thus a shift

FIG. 4. Balance between inward/outward active dendritic conductances enhances output variability in response to synaptic stimulation. A: output firing rate
as a function of input rate. Firing rate quickly saturated for a neuron with a passive dendritic tree (closed black circles) but was a less rapidly increasing function
of input rate when all fast and slow conductances were present (open circles), the A-type K� outward conductance was reduced twofold (green diamonds,
Ka* � 0.5Ka), the dendritic Na conductance was increased by 20% (red circles), or only fast conductances (open squares) were present in the dendritic
compartments. B: firing variability measure, CV2, as a function of output firing rate, for all conditions shown in A. Note that when calcium and slow
afterhyperpolarization (sAHP) conductances were removed from dendritic compartments, the variability measure attained lower values as compared with the
baseline model. With the point neuron firing at the rate comparable to that of the baseline model, the variability was much lower than for the baseline model.
The same keys apply to both subpanels. C: modulation of output firing rate (C1) and its variability (C2) by the balance between fast inward current (sodium)
and fast outward current (A-type potassium). An increase in dendritic sodium channel conductance (red circles) led to an increase in firing rate and decrease in
variability of spiking. Scaling of dendritic A-type potassium channel conductance (green diamonds) has exactly the opposite effect. In all cases, the stimulation
frequency was 10 Hz. D: examples of somatic membrane potential traces for different cases analyzed in C. From top to bottom: baseline model, Na conductance
scaled by 0.7, Ka conductance scaled by 0.7, Na conductance scaled by 1.3, and Ka conductance scaled by 1.3. In all cases, the stimulation frequency was 10
Hz. E: fractional ISI occupancy analysis for different stimulation frequencies and different scenarios of dendritic excitability. Top left: averaged postspike
membrane potential in somatic compartment for baseline model (black trace) and Ka* � 0.5Ka model (green trace) at 2-Hz synaptic stimulation. Middle left:
averaged postspike membrane potential in somatic compartment for baseline model (black trace) and Ka* � 0.5Ka model (green trace) at 20-Hz synaptic
stimulation. Bottom left: fraction of ISI in the steady state plotted vs. the synaptic stimulation rate for baseline model (black circles) and Ka* � 0.5Ka model (green
diamonds). Right set of panels shows the same set of comparisons between baseline model (black traces and black circles) and the model with 20% increase in
dendritic Na conductance (red traces and red circles). F: duration of postspike AHP plotted vs. the synaptic stimulation rate for different scenarios. Black circles,
the baseline model; green diamonds, the Ka* � 0.5Ka model; red circles, the model with 20% increase in dendritic Na conductance. G: top: averaged (over different
voltage trajectories) SD of somatic membrane potential vs. the synaptic stimulation rate. Black circles, the baseline model; green diamonds, the Ka* � 0.5Ka model;
red circles, the model with 20% increase in dendritic Na conductance. Bottom: SD of ISI series for these 3 scenarios. H: probability to evoke somatic spike by
synchronously activated (deterministic) synapses. Circles, the baseline model; solid red, the model in which dendritic Na channel conductance was decreased by 10%
(with the level of dendritic KA conductance fixed); solid green, the model in which dendritic KA conductance was decreased by 10% (with the level of dendritic Na
conductance fixed); dashed line, the model in which both dendritic Na and KA conductances were reduced by 10%.
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in the expression of dendritic fast inward/outward currents
could affect ISI variability through a change in the proba-
bility of spike generation.

To test the validity of these observations, we assessed, for
different scenarios, the probability of somatic spike generation
versus the number of synchronously activated synapses. In
these simulations, one stimulus was delivered to a set of
reliable synapses that were randomly distributed over apical
dendrites of pyramidal neuron, and somatic responses to such
a stimulus were averaged over 50 independent realizations.
Figure 4H shows that, in general, the probability of generating
a somatic spike was a sigmoid-like function of the number of
activated synapses. A 10% reduction in conductance of den-
dritic KA channels (while keeping the level of Na conductance
fixed) shifted the curve to the left, whereas a 10% reduction in
the level of dendritic Na conductance (while keeping the level
of KA conductance fixed) produced a comparable shift to the
right. In contrast, joint variation of both the Na and KA
conductances left the curve nearly unchanged.

Efficient detection of slow synaptic fluctuations relies on
dendritic voltage-gated calcium channels

Removal of calcium and slow, calcium-activated AHP con-
ductances from dendritic compartments of a neuron led to a
decrease in the variability of firing (Fig. 4A, squares vs.
circles). This suggested that calcium-associated mechanisms
might contribute to the balance between inward and outward
conductances in the model.

A change in the level of dendritic calcium channel conduc-
tance could affect the balance condition by shifting the prob-
ability to evoke somatic spike in response to synchronous
stimulation of several synapses, as described in the previous
section for the case of sodium and potassium channels (Fig.
4G). However, a complete removal of dendritic calcium chan-
nel conductance did not significantly affect the probability of
somatic spike generation (Fig. 5C), suggesting that the fast
current through dendritic calcium channels might not be the
dominant factor behind spike series irregularity.

We further assessed the role of the electrical current conducted
by calcium channels by examining the effect of dendritic calcium
channels that increase internal calcium concentration without
conducting a net current. Specifically, this was performed by
adding, for each type of calcium channel, a nonspecific ionic
current that was equal and opposite to the inward current con-
veyed by that type of calcium channel. As shown in Fig. 5, A and
B (circles vs. crosses), this removal of net ionic current (without
affecting the dynamics of internal calcium concentration) did not
lead to any significant departure from the basic results. On the
other hand, a complete removal of voltage-gated Ca2� channels
from dendrites dramatically increased the mean rate and reduced
the variability of output spike time series. These results suggest
that voltage-gated calcium channels (VGCCs) are necessary but
not sufficient to explain the change in synaptic gain that occurs in
the full model.

The effect of calcium channels on spike train variability might
be mediated by processes activated by changes in intracellular
calcium concentration rather than by the depolarizing effects
of the calcium currents (Fig. 5D). Consistent with this explana-
tion, the rate and the variability of spiking were affected by
changing the characteristic time of calcium extrusion pump (Fig.

5, E and F). Thus calcium-activated sAHP, rather than the fast
current through dendritic calcium channels per se, is responsible
for the more variable responses that are observed in the baseline
model. As is shown in Fig. 5G, activation of dendritic VGCCs
after the arrival of back-propagating AP or dendritic spike led to
influx of calcium that turned on slow Ca2�-activated K� conduc-
tance. This had the effect of hyperpolarizing the membrane and
effectively reducing the average synaptic drive, thus shifting the
balance toward the regimen of higher variability. However, the
coupling of different VGCC types to slow, Ca2�-activated potas-
sium channels in dendrites is uncertain (Pineda et al. 1998; Shah
and Haylett 2000), as is the precise mechanism of sAHP activa-
tion by calcium (Sah and Clements 1999).

We assessed the robustness of calcium-activated potassium
channels by performing simulations with different, more detailed,
models of channels underlying sAHP (METHODS). The output spike
series variability was significantly higher when different sAHP
channels were added to apical dendrites of the neuron (Fig. 5H).
Interestingly, ISI variability was highest for the most detailed
model of the sAHP that incorporated stochastic binding and
unbinding of Ca2� ions from sAHP channel gates (Sah and
Clements 1999).

Distribution and expression of dendritic sAHP affects both
rate and variability gain

Among all the active currents in dendrites, the sAHP con-
ductance is potentially the most interesting because the rise and
decay time scales (�100-ms rise, �1-s decay) are compatible
to the time scales of short-term presynaptic plasticity (	100
ms for short-term facilitation, 	1 s for recovery from short-
term depression). Therefore the peak values of the sAHP
conductance and its spatial distribution are likely to be impor-
tant. Experimental evidence suggests that the sAHP K� chan-
nels might be preferentially located in proximal apical den-
drites (but see Bekkers 2000), although with uncertain density
(Sah and Bekkers 1996). Therefore we first varied the peak
g�sAHP value in dendritic compartments, assuming the spatial
profile shown in Fig. 6A. A systematic reduction of dendritic
peak sAHP resulted in a rise of the firing rate (Fig. 6B) and a
decrease of output variability (Fig. 6C). Interestingly, a neuron
with a uniform dendritic profile of sAHP (Fig. 6A, dashed line)
was still able to generate significantly variable spike time series
in response to synaptic stimulation, indicating that the baseline
level of sAHP might also be important. Furthermore, we
assessed the importance of the specific spatial profile of den-
dritic sAHP conductance distribution by performing simula-
tions for the model pyramidal neuron with altered sAHP
distribution shape (Fig. 6A, gray lines; the overall dendritic
sAHP conductance in this model was equal to that in the
baseline model). This manipulation had little effect on the
firing rate of the neuron but caused a reduction in its spike time
series variability (Fig. 6, B and C, crosses). This suggests that
the variability in neuronal spike time series might depend, at
least in part, on the dynamics of local inward/outward conduc-
tance balance in its dendritic branches. Thus the strength and
the specific distribution of dendritic sAHP defined the extent of
irregularity in neuronal spike time series.

The sAHP in dendritic compartments significantly contrib-
uted to spike time series variability. In contrast, stronger
somatic sAHP slightly reduced the variability (Fig. 6D, 2nd
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panel). Analysis of the mean ISI helped to understand this
difference. An increase in somatic sAHP slightly increased the
mean ISI but also led to an increase in the duration of postspike
refractory phase (Fig. 6D, 4th panel), compensating for the
effect of synaptic input on variability. In comparison, an
increase in dendritic level of sAHP conductance also led to an
increase in the duration of postspike AHP but significantly
increased the mean ISI, therefore resulting in a net increase in
the fraction of ISI spent in the steady-state voltage regimen
(Fig. 6D, 3rd panel).

How does activation of the sAHP in the model dynamically
reduce the excitatory synaptic drive? One possibility is that
global back-propagating APs (Fig. 1C) regulated local den-
dritic excitability by activating sAHP channels. Another pos-
sibility is that this kind of regulation is mediated by local
dendritic spikes, which spread 	80 �m from their initiation

site (Fig. 1D). To test the latter explanation, apical dendritic
branches were asynchronously stimulated by randomly distrib-
uted Nsyn � 100 deterministic synapses by 5 pulses at 20 Hz.
Such stimulation generated subthreshold somatic voltage fluc-
tuation that did not result in somatic spikes (Fig. 6E, top). A
test stimulus, delivered 150 ms later by synchronous activation
of Nsym � 22 (deterministic) synapses (distributed in the earlier
stimulated compartments) failed to generate somatic spike. So-
matic spikes could, however, be reliably generated by the same
test stimulus in the absence of any preconditioning stimulation or
after the sAHP was removed from dendrites (Fig. 6E). These
results suggest that spike-time variability could be attributed, at
least in part, to the action of subthreshold synaptic stimulation and
local dendritic spikes.

We further considered how different patterns of somatic
spiking activity could affect subsequent neuronal firing pat-

FIG. 5. Influence of voltage-gated calcium channels on the firing rate and spike variability of the CA1 pyramidal neuron. A: output rate as a function of input
rate when all Ca2� channels were removed from dendritic compartments (diamonds) compared with the baseline model in which calcium mechanisms were
present in all dendritic compartments (open black circles) or with the firing rate of a neuron with altered Ca2� channels that increased internal calcium
concentration but did not conduct net calcium current (black crosses). B: firing variability measured by CV2 as a function of output rate for the conditions in
A. C: probability to evoke somatic spike by synchronous activation of synapses does not depend on the level of dendritic Ca2� channel conductance (the black
curve for the baseline model almost coincides with the gray curve for the model without dendritic calcium channels). D: examples of calcium concentration build
up in apical dendritic compartments in response to somatic stimulation by step current. Calcium profiles shown in the baseline model (top) and the model with
altered calcium channel properties (middle). E: output firing rate of model pyramidal neuron plotted vs. characteristic time constant of calcium extrusion from
somatic and dendritic compartments. F: firing rate variability, as captured by CV2, plotted vs. characteristic time constant of calcium extrusion from somatic and
dendritic compartments. Variability of spiking increased as more calcium accumulated in dendrites. G: typical time courses of responses. Somatic membrane
potential (top) and the membrane potential in a dendritic compartment (2nd panel from top). High-amplitude fluctuations in the dendritic membrane potential
led to an increased dendritic Ca2� levels (3rd panel from top) through activation of voltage-gated calcium channels. Bottom: membrane potential in that same
dendritic compartment as above when all dendritic Ca2� channels were removed. H: output spike series variability for different models of sAHP plotted vs.
different input stimulation rates.
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terns through interaction of sAHP with fluctuating synaptic
input. As shown in Fig. 6F, high-frequency stimulation of a
neuron with deterministic synapses elicited variable responses
to test stimulation with stochastic synapses (Nsym � 80, 10
pulses at 20 Hz), delivered after 400 ms. This variable response
was a direct outcome of dendritic sAHP activation, because a
removal of Ca2�-dependent potassium channels resulted in a
more regular response to test stimulation (Fig. 6F, bottom).
Low-frequency stimulation with deterministic synapses had
almost no effect on responses to subsequent test stimulus (Fig.
6F, middle). We further assessed the time scale associated with
the effect of dendritic sAHP on spiking irregularity in our
model by changing the interval �T from cessation of precon-
ditioning deterministic stimulation to the onset of test stimuli
(as in Fig. 6F, 3rd panel) and monitoring the spike responses.
The spike raster plot, shown in Fig. 6G suggests that the effects

of dendritic sAHP persisted for 	800 ms. Thus the effect of
the dendritic sAHP on spike time irregularity depended on the
characteristics of earlier neuronal spiking activity.

Spike number variability during theta oscillations

The principal neurons in the hippocampal formation are
modulated by theta (4–8 Hz) rhythms (Buzsaki 2002). The
interaction of voltage variations (caused by theta oscillation)
with the various active conductances can, in principle, affect
the properties of neuronal spike trains. Experimental evidence
indicates that the number of spikes fired during a theta cycle is
highly variable, but the origin of this variability remains
unknown. To gain insight into the effects of theta rhythms on
spike train variability, we injected an oscillating current into
the soma of the model neuron, simultaneously stimulating the

FIG. 6. Changing the distribution of dendritic sAHP conductance modulated neuronal output firing rate and firing variability. A: different distributions of
dendritic sAHP conductances (circles, high; squares, medium; diamonds, flat) relative to that in somatic compartment (1 pS/�m2). Solid gray line with black
crosses: altered spatial profile of dendritic sAHP distribution. B: output firing rate as a function of input rate for different distributions shown in A and compared
with removal of the sAHP from dendritic compartments (black closed circles). C: firing variability measured by CV2 vs. output rate for different distributions
in B. D: top: firing rates obtained at 20-Hz stimulation vs. the level of somatic sAHP with dendritic sAHP fixed (left) and vs. the level of dendritic sAHP with
somatic sAHP fixed (right). Second panel: firing rate variability for the 2 scenarios shown in the top panel. Third panel: fraction of ISI in the steady state. Fourth
panel: duration of postspike AHP. Fifth panel: averaged (over different voltage trajectories) SD of postspike somatic membrane potential. Sixth panel: mean
postspike somatic membrane potentials for low (scale factor, 0.5; thin black trace) and high (scale factor, 1.5; thick black trace) levels of somatic sAHP (left)
and for low (scale factor, 0.5; thin black trace) and high (scale factor, 1.5; thick black trace) levels of dendritic sAHP (right). E: spike conditioning of apical
dendritic branches by sub-threshold synaptic stimulation and dendritic sAHP. F and G: neuronal response to stochastic synaptic stimulation depends on the
pattern (F) and timing (G) of its prior spiking activity. In G, the black squares in the spike raster plot mark the occurrence of spikes in response to 1 of 10 test
stimuli (stimulation rate, 20 Hz) for different time intervals �T from cessation of preconditioning deterministic stimulation (10 pulses at 20 Hz) to the onset of
test stimulation of plastic synapses (10 pulses at 20 Hz).
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afferent synapses with Poisson spike trains. Interestingly, the
theta-like signal modulated the firing rate but did not signifi-
cantly affect the variability of neuronal spike trains (Fig. 7A).
The spike count (defined as a number of spikes in 1 cycle)
fluctuated, with the model neuron firing between zero and four
APs during one theta oscillation (Fig. 7B).

To quantify the variability in spike count, we computed the
Fano factor, defined as FF � Var(SC)/�SC�, where SC is the set
of spike counts. The relatively high values of the Fano factor
(Fig. 7D) and the variability measure of the ISI series, CV2
(Fig. 7C), indicate that, even though the theta-modulated neu-
ron discharged primarily during high phase of theta cycle, its
firing pattern was still highly irregular. These observations
suggest the variable neuronal discharge that is induced by
presynaptic short-term plasticity and active dendritic branches
might contribute to the variability in output of hippocampal
neurons during theta activity.

The dependence of neuronal firing pattern on the previous
history of stimulation is modulated by intrinsic conduc-
tances. Consider the case of a pyramidal neuron driven by
two sets of plastic synapses (Fig. 7E). The synapses belong-
ing to one set (Nsym � 80) are synchronously activated, and
the two sets are alternatively activated (each stimulated at
10 Hz), generating an overall 20-Hz rhythmic stimulation of
fluctuating strength. As shown in Fig. 7E (top trace), in the
baseline model, the response of a neuron to such a stimulus
is irregular. Spike generation in response to synaptic set
activation is determined here by the state of presynaptic
terminals (context defined by earlier synaptic activity) and
by the pattern of spike time series of that same neuron
(context defined by active dendritic conductances and den-
dritic sAHP). On the other hand, when a dendritic sAHP is
blocked, the sensitivity to synaptic context is greatly re-
duced (Fig. 7E, 2nd trace).

FIG. 7. Response of a synaptically activated model pyramidal neuron to somatic theta rhythm modulation. A: membrane potential in the somatic compartment
of a neuron that was modulated by theta-like current injection and synaptically stimulated by vstim � 20-Hz Poisson spike trains. A periodic current I(t) � 0.2
nA 
 sin(2� 
 f 
 t), with f � 10 Hz, was injected into somatic compartment (bottom). B: spike count (number of spikes per theta oscillation) also exhibited
significant variability. The shaded region corresponds to the time interval shown in A. C: output firing variability vs. input rate. D: the variability of output spike
count, as captured by Fano factor, as a function of input rate. E: context-dependent response to synaptic stimulation. Top trace: Somatic membrane potential of
pyramidal model neuron in response to rhythmic and alternating stimulation by 2 sets of synapses. Second trace: somatic membrane potential of pyramidal model
neuron driven by the same pattern of stimulation, but with sAHP removed from apical dendrites. Third to Sixth traces: somatic membrane potential of pyramidal
model neuron when only 1 of synaptic groups is activated, with and without sAHP in apical dendrites of a model neuron. Bottom histogram: fraction, F, of
synapses (gray and black represent 2 different sets of synapses) that release during the train of stimuli corresponding to the top trace.

3247LOCAL BALANCE IN ACTIVE DENDRITES

J Neurophysiol • VOL 102 • DECEMBER 2009 • www.jn.org

 on D
ecem

ber 6, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


D I S C U S S I O N

The sensitivity of a neuron to correlated synaptic inputs
depends on balancing the overall excitatory and inhibitory
synaptic inputs to a neuron (Salinas and Sejnowski 2000). We
showed here that balancing with inhibitory inputs is not nec-
essary for this to occur. Using a biophysically realistic model
of use-dependent short-term presynaptic plasticity at excitatory
synapses and active dendritic conductances, we showed that a
balance of inward and outward currents within dendritic com-
partments yields a high degree of variability in the output spike
train. This depended in part on the slow potassium current
(sAHP), which matched the slow time scale synaptic fluctua-
tions arising from presynaptic short-term plasticity. Previously,
fast outward dendritic currents were suggested as a possible
way to maintain output variability (Prescott and Sejnowski
2008; Softky 1995), without considering presynaptic mecha-
nisms.

Dendritic potassium conductances counteracted strong exci-
tatory drive that would otherwise decrease the irregularity.
This is consistent with an earlier study of spiny neostriatal
neurons, in which potassium channel activation governed the
transition of the membrane voltage from up to down states,
counteracting strong synaptic excitation (Wilson and Kawagu-
chi 1996). We also showed that potassium channels, and in
particular calcium-activated potassium channels, can maintain
high output irregularity when dendrites are driven by many
synapses with short-term plasticity. This depended on the
dendritic balance between fast inward and outward currents,
which allowed the fluctuating synaptic signals to generate
somatic spikes, as well as the dendritic calcium-activated
potassium channels, which adjusted the excitability of den-
dritic branches to the global and local spiking activity. These
results suggest that dendritic potassium channels can to some
extent replace synaptic inhibition in balancing synaptic exci-
tation and endowing the neuron with an additional, autono-
mous way to regulate spiking.

Although fast active conductances were able to support
some dendritic variability, the inclusion of relatively slow
channels, such as the Ca2�-activated slow K� currents, en-
hanced the sensitivity of the dendrites to the slow, activity-
dependent fluctuations in the synaptic inputs. In our model,
dendritic sAHP could be activated either by back-propagating
APs or by local dendritic spikes that spread to a limited
distance (	80 �m) from the site of their initiation (Fig. 1D).
Taken together with the strong independence of pyramidal
neurons dendritic branches (Poirazi et al. 2003b) and spatially
nonuniform distribution of sAHP, this leads to the notion of
“local balance,” in which the branch-specific distribution of
dendritic conductances, and in particular of sAHP, defines the
sensitivity of that branch to patterns of synaptic stimulation.
Although the precise definition of locality depends on many
factors (such as, for example, the spatial distribution of syn-
aptic terminals on apical dendrites or the precise distribution
and variety of active conductances), we postulate that the range
of dendritic spike propagation (80–100 �m) or branch length
is the relevant spatial scale.

The primary effect of sAHP is to increase membrane con-
ductance and therefore change the membrane mode from
integration to coincidence detection (Andreasen and Lambert
1995; Softky and Koch 1993). It is reasonable to assume that,

under physiological conditions, the transients in dendritic cal-
cium are compartmentalized by dendritic spines and rarely
spread by diffusion through the entire tree (Andreasen and
Lambert 1995; Yuste and Denk 1995). In this situation, den-
dritic membrane conductance at a given synaptic site could
fluctuate depending on the expression of sAHP conductance in
the immediate proximity (	4 �m) of that synapse and on the
ongoing collective synaptic activity within 	80 �m from that
synapse, thus reinforcing the activity-dependent fluctuation in
synaptic drive and leading to variable neuronal discharge
(Schwindt and Crill 1997). This raises the interesting question
of whether the expression of sAHP channels in dendrites is
directly controlled by the distribution and activity of synapses
(Stemmler and Koch 1999). Interestingly, several recent stud-
ies suggest that the regulation of sAHP might control the
heterosynaptic induction of long-term potentiation and long-
term depression in CA1 pyramidal cells (Le Ray et al. 2004).
Taken together with our findings, these observations call for a
detailed study of the contribution of the sAHP to long-term
synaptic plasticity.

Different sites of synaptic input can “communicate” through
back-propagating APs and/or dendritic spikes, as occurred in
the model. Significantly, even without these two mechanisms,
sufficient depolarization of the postsynaptic membrane result-
ing from intense synaptic stimulation can allow large influx of
Ca2� through NMDA- and voltage-gated calcium channels
(Magee et al. 1995), with possible subsequent diffusion of
Ca2� signal and activation of calcium-dependent K� channels
at nearby nonactive synapses. For this to happen, however,
synaptic sites would have to be sufficiently clustered, and their
activity would have to be sufficiently intense and correlated in
time, to generate a Ca2� signal strong enough to diffuse for a
significant distance along the dendritic tree (Larkum and Ne-
vian 2008). Because the afferents in our model were uniformly
distributed along the dendrites and were activated at random
times, and strong presynaptic depression significantly reduced
the excitatory drive at individual synapses, the effects of Ca2�

diffusion and buffering were negligible, and the probability of
activating the sAHP conductance by coordinated action of
spatially proximal synapses was small. However, exactly how
complex patterns of synaptic organization and activity might
affect the integrative properties of pyramidal neurons through
diffusion-mediated long-range calcium signaling is a question
that should be further explored (Gasparini and Magee 2006;
Larkum and Nevian 2008).

In a recent study of synaptic integration in CA1 dendritic
trees (Gasparini and Magee 2006), asynchronous inputs ran-
domly distributed as in our model produced approximately
linear summation in the dendritic branches; however, when
synaptic inputs arrived synchronously and were spatially clus-
tered in a single dendritic compartment, the clustered input
produced a highly nonlinear integration that led to an AP at the
soma that was remarkably precise and invariant. This suggests
that these neurons have two modes for integrating dendritic
inputs that favors rate processing for randomly arriving inputs
and temporal processing for synchronously arriving inputs.
The dendritic balance obtained by the mechanisms studied here
could explain the observed sensitivity of dendritic branches to
correlated synaptic inputs.

This study focused on the effect of excitatory inputs from
Schaffer collaterals and did not include the contribution of
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feedback and feed-forward inhibition on the activity of CA1
neurons. Reproducing the effects of inhibition in a single
neuron model is quite challenging, because feed-forward inhi-
bition from CA1 interneurons is activated by inputs from CA3
region, and the exact interconnectivity pattern of these inter-
neurons is largely unknown. Nevertheless, recent experimental
evidence has indicated that there is a local dendritic structural
and functional balance between excitation and inhibition (Liu
2004) and that excitatory and inhibitory synapses on CA1
pyramidal cells act in synergy to enhance synaptic gain in these
neurons (Klyachko and Stevens 2006). There is also strong
inhibition on the soma, in addition to inhibitory modulation of
local excitability in individual dendritic branches. These inhib-
itory effects enhance the ability of a neuron to detect synaptic
fluctuations and could act synergistically, at different time
scales, with the mechanism of dendritic balance by sAHP
suggested here.

CA1 pyramidal neurons in the hippocampus respond selec-
tively to locations in an environment (O’Keefe and Nadel
1978). In experiments performed on freely behaving rats, a
“place cell” fires only when the animal passes through its
corresponding “place field”; however, the pattern of firing is
unusually variable (Fenton and Muller 1998). This variability
could represent additional (nonspatial) information, set by
behavioral context (Fenton and Muller 1998). Computational
models (Olypher et al. 2002) suggest that variability in place
cell firing can be ascribed to relatively slowly (hundreds of
milliseconds) fluctuating synaptic inputs, but how this fluctu-
ation survives summation over thousands of synapses is not
clear. In our model, balance was maintained by interaction
between dendritic and synaptic mechanisms, which allowed
information present in input fluctuations and high-frequency
oscillations to be detected and passed on by the CA1 neuron.

Several studies have suggested that alteration of the sAHP
levels affects maze behavior and learning (Tombaugh et al.
2005); this is a possible link between cellular excitability in
dendrites and changes in behavior. Our specific observations
regarding the synergistic action of short-term presynaptic de-
pression and slow, active dendritic currents suggest a testable
hypothesis about the involvement of sAHP conductances in the
modulation of place cell firing (Fig. 7). Namely, we propose
that synergistic interactions between the sAHP and presynaptic
plasticity at Schaffer collaterals might be necessary for the
efficient encoding of positional and contextual information
associated with pyramidal place cell activity (Eichenbaum et
al. 1999; Fenton and Muller 1998). In this view, positional
information is given by the spatial pattern of synaptic activa-
tion at a given moment, whereas the context in which this
information is being relayed is provided by the temporal
history of synaptic activation and neuronal spiking.

A practical way to test the involvement of dendritic sAHP in
the generation of contextual firing could be by monitoring the
animal’s navigation in the modified T-maze (Wood et al.
2000). In these experiments, the firing pattern of pyramidal
neurons with place field on the central stem of a T-maze
depended on the route that the animal had taken during the
earlier traverse through the maze (either right or left turn).
Thus the place-related activity of hippocampal neurons was
strongly affected by the context of the ongoing task (Wood et
al. 2000). The pharmacological blockade of dendritic sAHP,
which, according to our model, would significantly affect the

temporal structure of pyramidal neuron spike time series, could
affect the animal’s decisions during the navigation in the
modified T-maze.

G R A N T S

This work was supported by the National Science Foundation–sponsored
Center for Theoretical Biological Physics (Grants PHY-0216576 and PHY-
0225630), the Howard Hughes Medical Institute to T. J. Sejnowski, and the
Tauber Fund at Tel-Aviv University to E. Ben-Jacob. V. Volman acknowl-
edges the support of U.S. National Science Foundation I2CAM International
Materials Institute Award, Grant DMR-0645461.

R E F E R E N C E S

Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic depression and cortical
gain control. Science 275: 221–224, 1997.

Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. The Hippocampus
Book. New York: Oxford, 2007.

Andreasen M, Lambert JDC. The excitability of CA1 pyramidal cell den-
drites is modulated by a local Ca2� -dependent K� conductance. Brain Res
698: 193–203, 1995.

Bekkers JM. Distribution of slow AHP channels on hippocampal CA1
pyramidal neurons. J Neurophysiol 83: 1756–1759, 2000.

Bertram R, Sherman A, Stanley EF. Single-domain/bound calcium hypoth-
esis of transmitter release and facilitation. J Neurophysiol 75: 1919–1931,
1996.

Buzsaki G. Theta oscillations in the hippocampus. Neuron 33: 325–340, 2002.
Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G. Oscillatory

coupling of hippocampal pyramidal cells and interneurons in the behaving
rat. J Neurosci 19: 274–287, 1999.

de la Rocha N, Parga N. Short-term synaptic depression causes a non-
monotonic response to correlated stimuli. J Neurosci 25: 8416–8431, 2005.

Dobrunz LE, Huang EP, Stevens CF. Very short-term plasticity in hip-
pocampal synapses. Proc Natl Acad Sci USA 94: 14843–14847, 1997.

Dobrunz LE, Stevens CF. Heterogeneity of release probability, facilitation
and depletion at central synapses. Neuron 18: 995–1008, 1997.

Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H. The
hippocampus, memory, and place cells: is it spatial memory or a memory
space? Neuron 23: 209–226, 1999.

Fenton AA, Muller RU. Place cell discharge is extremely variable during
individual passes of the rat through the firing field. Proc Natl Acad Sci USA
95: 3182–3187, 1998.

Gabbiani F, Koch C. Principles of spike train analysis. In: Methods in
Neuronal Modeling, edited by Koch C, Segev I. Cambridge, MA: MIT
Press, 1998, p. 313–360.

Garcia-Perez E, Wesseling JF. Augmentation controls the fast rebound from
depression at excitatory hippocampal synapses. J Neurophysiol 99: 1770–
1786, 2008.

Gasparini S, Magee JC. State-dependent dendritic computation in hippocam-
pal CA1 pyramidal neurons. J Neurosci 26: 2088–2100, 2006.

Golding NL, Kath WL, Spruston N. Dichotomy of action-potential back-
propagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86: 2998–
3010, 2001.

Harris KM, Jensen FE, Tsao B. 3D structure of dendritic spines and synapses
in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications
for the maturation of synaptic physiology and long-term potentiation.
J Neurosci 12: 2685–2705, 1992.

Hines ML, Carnevale NT. NEURON: a tool for neuroscientist. Neuroscientist
7: 123–135, 2001.

Hoffman DA, Magee JC, Colbert CM, Johnston D. K� channel regulation
of signal propagation in dendrites of hippocampal pyramidal neurons.
Nature 387: 869–875, 1997.

Holt GR, Softky WR, Koch C, Douglas RJ. Comparison of discharge
variability in-vitro and in-vivo in cat visual cortex neurons. J Neurophysiol
75: 1806–1814, 1996.

Ishizuka N, Cowan WM, Amaral DG. A quantitative analysis of the
dendritic organization of pyramidal cells in the rat hippocampus. J Comp
Neurol 362: 17–45, 1995.

Klyachko VA, Stevens CF. Excitatory and feed-forward inhibitory hippocam-
pal synapses work synergistically as an adaptive filter of natural spike trains.
PLoS Biol 4: e207, 2006.

Larkum ME, Nevian T. Synaptic clustering by dendritic signalling mecha-
nisms. Curr Opin Neurobiol 18: 321–331, 2008.

3249LOCAL BALANCE IN ACTIVE DENDRITES

J Neurophysiol • VOL 102 • DECEMBER 2009 • www.jn.org

 on D
ecem

ber 6, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


Le Ray D, de Sevilla DF, Porto AB, Fuenzalida M, Buno W. Heterosynaptic
metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat
hippocampus. Hippocampus 14: 1011–1025, 2004.

Li X, Ascoli GA. Computational simulation of the input-output relationship in
hippocampal pyramidal cells. J Comput Neurosci 21: 191–209, 2006.

Liu G. Local structural balance and functional interaction of excitatory and
inhibitory synapses in hippocampal dendrites. Nat Neurosci 7: 373–379,
2004.

Lorincz A, Notomi T, Tamas G, Shigemoto R, Nusser Z. Polarized and
compartment-dependent distribution of HCN1 in pyramidal cell dendrites.
Nat Neurosci 5: 1185–1193, 2002.

Magee JC. Dendritic hyperpolarization-activated currents modify the integra-
tive properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:
7613–7624, 1998.

Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston
D. Subthreshold synaptic activation of voltage-gated Ca2� channels medi-
ates a localized Ca2� influx in the dendrites of hippocampal pyramidal
neurons. J Neurophysiol 74: 1335–1342, 1995.

Magee JC, Cook EP. Somatic EPSP amplitude is independent of synapse
location in hippocampal pyramidal neurons. Nat Neurosci 3: 895–903, 2000.

Magee JC, Johnston D. Characterization of single voltage-gated Na� and
Ca2� channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol
487: 67–90, 1995.

Mainen ZF, Sejnowski TJ. Modeling active dendritic processes in pyramidal
neurons. In: Methods in Neuronal Modeling, edited by Koch C, Segev I.
Cambridge, MA: MIT Press, 1998, p. 171–209.

Maletic-Savatic M, Malinow R, Svoboda K. Rapid dendritic morphogenesis
in CA1 hippocampal dendrites induced by synaptic activity. Science 283:
1923–1927, 1999.

Migliore M, Ferrante M, Ascoli GA. Signal propagation in oblique dendrites
of CA1 pyramidal neurons. J Neurophysiol 94: 4145–4155, 2005.

Migliore M, Hoffman DA, Magee JC, Johnston D. Role of A-type K�

conductance in back-propagation of action potentials in the dendrites of
hippocampal pyramidal neurons. J Comput Neurosci 7: 5–15, 1999.

Migliore M, Shepherd GM. Emerging rules for the distributions of active
dendritic conductances. Nat Rev Neurosci 3: 362–370, 2002.

Muller RU, Kubie JL, Ranck JB. Spatial firing patterns of hippocampal
complex-spike cells in a fixed environment. J Neurosci 7: 1935–1950, 1987.

Murthy VN, Sejnowski TJ, Stevens CF. Dynamics of dendritic calcium
transients evoked by quantal release at excitatory hippocampal synapses.
Proc Natl Acad Sci USA 97: 901–906, 2000.

Nadkarni S, Jung P. Modeling synaptic transmission of the tripartite synapse.
Phys Biol 4: 1–9, 2007.

O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. Oxford, UK:
Clarendon Press, 1978.

Olypher AV, Lansky P, Fenton AA. Properties of the extra-positional signal
in hippocampal place cell discharge derived from the over-dispersion in
location-specific firing. Neuroscience 111: 553–566, 2002.

Pineda JC, Waters RS, Foehring RC. Specificity in the interaction of HVA
Ca2� channel types with Ca2�-dependent AHPs and firing behavior in
neocortical pyramidal neurons. J Neurophysiol 79: 2522–2534, 1998.

Poirazi P, Brannon TM, Mel BW. Arithmetic of subthreshold synaptic
summation in a model CA1 pyramidal cell. Neuron 37: 977–987, 2003a.

Poirazi P, Brannon TM, Mel BW. Pyramidal neuron as two-layer neural
network. Neuron 37: 989–999, 2003b.

Poolos NP, Migliore M, Johnston D. Pharmacological up-regulation of
H-channels reduces the excitability of pyramidal neuron dendrites. Nat
Neurosci 5: 767–774, 2002.

Prescott SA, Sejnowski TJ. Spike-rate coding and spike-time coding are
affected oppositely by different adaptation mechanisms. J Neurosci 28:
13649–13661, 2008.

Reyes AD. Influence of dendritic conductances on the input-output properties
of neurons. Annu Rev Neurosci 24: 653–675, 2001.

Sah P, Bekkers JM. Apical dendritic location of slow afterhyperpolarization
current in hippocampal pyramidal neurons: implications for the integration
of long-term potentiation. J Neurosci 16: 4537–4542, 1996.

Sah P, Clements JD. Photolytic manipulation of [Ca2�]i reveals slow kinetics
of potassium channels underlying the afterhyperpolarization in hippocampal
pyramidal neurons. J Neurosci 19: 3657–3664, 1999.

Salinas E, Sejnowski TJ. Impact of correlated synaptic input on output firing
rate and variability in simple neuronal models. J Neurosci 20: 6193–6209,
2000.

Schwindt PC, Crill WE. Modification of current transmitted from apical
dendrite to soma by blockade of voltage- and Ca2�- dependent conductances
in rat neocortical pyramidal neurons. J Neurophysiol 78: 187–198, 1997.

Shadlen MN, Newsome WT. The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding. J Neu-
rosci 18: 3870–3896, 1998.

Shah MM, Haylett DG. Calcium channels involved in the generation of the
slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons.
J Neurophysiol 83: 2554–2561, 2000.

Softky WR. Simple codes versus efficient codes. Curr Opin Neurobiol 5:
239–247, 1995.

Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs. J Neurosci 13: 334–350, 1993.

Stemmler M, Koch C. How voltage-dependent conductances can adapt to
maximize the information encoded by neuronal firing rate. Nat Neurosci 2:
521–527, 1999.

Stevens CF, Tsujimoto T. Estimates for the pool size of releasable quanta at
a single central synapse and for the time required to refill the pool. Proc Natl
Acad Sci USA 92: 846–849, 1995.

Stuart G, Spruston N, Hausser MH. Dendrites. Oxford, UK: Oxford Uni-
versity Press, 1999.

Tombaugh GC, Rowe WB, Rose GM. The slow afterhyperpolarization in
hippocampal CA1 neurons covaries with spatial learning ability in aged
Fisher 344 rats. J Neurosci 25: 2609–2616, 2005.

Traub RD, Buhl EH, Gloveli T, Whittington MA. Fast rhythmic bursting
can be induced in layer 2/3 cortical neurons by enhancing persistent Na�

conductance or by blocking BK channels. J Neurophysiol 89: 909–921,
2003.

Troyer TW, Miller KD. Physiological gain leads to high ISI variability in a
simple model of a cortical regular spiking cell. Neural Comput 9: 971–983,
1997.

Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca2�

channels at the base of major dendrites in hippocampal pyramidal neurons.
Nature 347: 281–284, 1990.

Williams SR, Stuart GJ. Role of dendritic synapse location in the control of
action potential output. Trends Neurosci 26: 147–152, 2003.

Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane
potential fluctuations of neostriatal spiny neurons. J Neurosci 16: 2397–
2410, 1996.

Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. Hippocampal
neurons encode information about different types of memory episodes
occurring in the same location. J Neurophysiol 27: 623–633, 2000.

Yuste R, Denk W. Dendritic spines as basic units of synaptic integration.
Nature 375: 682–684, 1995.

Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 64:
355–405, 2002.

3250 V. VOLMAN, H. LEVINE, E. BEN-JACOB, AND T. J. SEJNOWSKI

J Neurophysiol • VOL 102 • DECEMBER 2009 • www.jn.org

 on D
ecem

ber 6, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org

